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Abstract—The problem of two kinds of ellipsoidal inhomogeneities embedded in an elastic body is
formulated with an application to a hybrid (three-phase) composite. The analytical tool used in this study is
a combination of Eshelby’s equivalent inclusion method[1] and Mori-Tanaka’s back stress analysis[2], and
therefore the resuits are valid for large volume fraction of inhomogeneities. As a demonstration, two types
of hybrid composites are examined: (i) fiber-fiber; and (ii) fiber-particulate systems.

1. INTRODUCTION
When an ellipsoidal inhomogeneity is embedded in an infinite elastic body, several related
problems can be solved rather simply by Eshelby’s equivalent inclusion method[1]. For
example, the overall stiffness of a two-phase composite material can be easily computed once
the corresponding eigenstrain is solved by this method.

However, when the volume fraction of inhomogeneity (filler) becomes large, Eshelby’s
equivalent inclusion method must be modified so as to take into account the interaction among
inhomogeneities as well as that between an inhomogeneity and the outer boundary of the
composite. The effect of the above interactions have been known as “a back stress” to material
scientists, Mori and Tanaka[2] discussed such-a problem within the framework of Eshelby’s
equivalent inclusion method. In Mori-Tanaka’s paper only one kind of inclusion was treated.

Recently Taya and Mura{3] have applied Mori-~Tanaka’s method to a penny-shaped crack at
a fiber end in a short-fiber reinforced composite to compute the energy release rate of the
fiber end crack and the weakened Young's modulus of the composite. In their model one kind of
inhomogeneity (fiber) was treated by Mori-Tanaka’s back stress analysis.

Here we extend Mori-Tanaka’s back stress analysis to hybrid (three-phase) composites
where two kinds of inhomogeneities are embedded in an infinite elastic body in order to obtain
the overall stiffness of the composite. To compute the overall stiffness of a hybrid composite,
one can also use a “self-consistent method”[4,5]. However, it requires a numerical com-
putation and also gives rise to inaccurate results when the stiffness of the constituent phases
differ from one another to a great extent, e.g. the case of soft matrix-rigid fiber, or fiber-crack
system. On the other hand, the present formulation gives us closed form results for the overall
stiffness. Hence the computation is simply a parametric one.

We first describe a theoretical formulation and then apply it to two types of hybrid
composites: (i) fiber—fiber; and (ii) fiber-particulate systems.

2. FORMULATION

Consider an infinite elastic body which contains infinite number of two kinds of in-
homogeneities and is subjected to the applied stress o as shown in Fig. 1. For later
conveniences, the domains of two kinds of ellipsoidal inhomogeneties are denoted by Q, and Q,
and that of the infinite body is denoted by D. Hence the domain of the matrix is D-Q,-(),. Note
that {}; can represent a particular inhomogeneity of type 1 or all inhomogeneities of type 1. This
is also the case with {},. Let the elastic constants of the matrix, and inhomogeneities €}, and (),
be Ciu, Cly and Ciy, respectively. The volume fractions of (2, and (), are denoted by f, and f,,
respectively.

We assume in this paper that all inhomogeneities are aligned in the uniaxial loading direction

1This research was supported by IVSF under Grant No. CME-7918249.
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Fig. 1. A calculation model

(say x;-axis). It should be noted that our formulation below is applicable to more general cases
of geometry. Further we assume that the three-phases (matrix, {}; and (),) are linearly elastic
and isotropic.

Under the applied stress o the average of the total stress in the matrix is given by
0'?; + (U;j)M [2] and

(oM = Cluéu 1)
where &, is the average strain disturbance due to all {; and ). Now introduce a single

inhomogeneity of type 1 ({},) into the composite, then the equivalent inclusion method yields in
D

oY+ ol = Clulel+éy+eh—er)
= Clulel + éy + €k 2
where o} and €] are the disturbance of the stress and strain due to this single (3;, respectively.
€} is the corresponding eigenstrain which has non-vanishing components in the domain of this

single ), and becomes zero outside this single ();,. For the entire domain D the following
relation always holds;

ol = Chued. 3
With eqn (3), eqn (2) yields
ol = Cluléu + €l — €i). )

Following Eshelby[1], we have

e;cl = Slklmne:n in 0'1 (5)
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where Sk, is the Eshelby’s tensor which depends on Ciu and the geometry of ;. Since the
added single inhomogeneity £, can represent any single };, the domain {}, in the preceding
equations is meant for any inhomogeneity of type 1.

Next we add another single inhomogeneity of type 2 ({},) to this composite system D. Then
we have in D

_ - 2 *k
o+ of=Cluleh+ & +eh—eu)

= Chlel + &+ €h). 6)
With eqn (2), eqn (6) provides
o} = Chuléu + e~ el M
€}, is again related to e as
= Stmnems i {h ®

where e§* is the eigenstrain defined in (),, and S}, depends on CJy and the geometry of
inhomogeneity of type 2. Since the disturbed stress o must satisfy fpo; dV =0, we obtain

(A =fi—fXopu + fleh) + flol) =0 ®

where { } denotes the voiume averaged quantity.

Eliminating €; and €}, through eqns (5) and (8), we have three unknowns, i.e. q;, e,, and e,, ,
which will be solved by the three equations (eqns (2), (6) and (9)). Once e?; and e}* are solved,
we can compute the overall stiffness of the composite by using the equxvalence of the strain
energies:

- 1
Cﬁu lodah = ‘icw lofal+ 2f10u€i;

1
+ahotel” (10)

where CJ, ™! and C§y! are the compliances of the matrix and the composite, respectively.
The details of the denvatlon of eqn (10) are given in Appendix A.

The computation of the eigenstrains and the overall stiffness of the composite are described
below for two types of hybrid composites: (i) fiber-fiber; and (ii) fiber-particulate systems. Let
the inhomogeneity of type 1 be fiber-1, and the inhomogeneity of type 2 be fiber-2 (fiber—fiber
system) or particulate (fiber-particulate system).

2.1 Computation of €} and €}*

Referring to Fig. 1, the non-vanishing applied stress is o3 (denoted by ¢°) and all fibers are
aligned along the loading axis (xs-axis). Hence the non-vanishing components of €%;, e¥% and &;
are ij =11, 22 and 33. It is also noted that the system of Fig. 1 gives rise to a transverse
insotropy, i.e. €f, = €},, et¥ =%} and &, = ép.

In setting ij = 11 and 33 in eqn (2), we obtain

Chieti+ Ched=—2Dy¥(edy + &) — (€% + &) (11)

Chen+ Cheyy=—2ed + &) — Dy*(eh + &) (12)
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where

1 2
CT; =m{ -1 +6Vg_m+3ﬂ '—2V0)g1}

imla i {1l ()

LA 1- 21/0 1 ([M"‘[A«o)[_ 20!12 { 3012
Clz ! ( )g’+2(1—l’ﬂ) :\1"&0 (a,2—1)+ (a;z—l)

~a —2vo)}gl]+(—A;-*_—°p;

S N RO _ 2
c,.—z(l_%){ 1+ 6= g+ X1 2vo)g,}+m_ ”

Tk 02 Gy {12 e e

-1 1- 23’0 (Aa’*zuo)
sz 1 ( Vo)g'i' Al /\-o (13)

L bt )[1 2"4’((36'l 511 2"“*‘3‘@_}5"]

s (i
D} H(A,—Ao)

Dt 142(lzt),

In eqn (13) A, u are Lamé constants, v is Poisson’s ratio, a is the aspect ratio of the fiber, and g
is defined in Appendix B. The subscripts 0 and 1 in the above equation denote the matrix and
fiber-1, respectively.

Noting that €3, = — pyo% Ep and € = 0% E, where E, is the matrix Young's modulus, we
solve for e}, and €x; in eqns (11) and (12) to obtain

B, B,* - v,B,*
€T1=ZTL€11 A*E33+; —"““—“"‘( 2 AZO ) (14)
B By* ~ *
f:;- A*G"+ A“*fss‘*‘g‘)(—"‘_‘*‘ A:°B3) (15)

where

A*= C sz C?:Ci"z

B*= 2(C12 - DI*C;)

B*=Dy*Cl,-Cn (16)
=2AD*Cy - C)

B = C; - DZ*CTl-
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The stress disturbed by Q,, o'}; is obtained by eqns (4), (5), (14) and (15) as

0'%1={ 2 +(H1|Bl*+HnBs*)}
wl0-2m) A

2u, | (HLBF*+ leB4*)}
* {1 2wt yx

HI(By* —wB/") , HY:BS - nBY)
Eo{ ulf P an

als_ { dvy  (HHB*+H} B,*)}
P (e T A*

{2(1 2Vo) (Hz1Bz*+szB4*)}

(1-23p) A¥*
o [H3(By* — w,B*) sz(B4 = voB3*) 1
A a (18)
where
2
Hf|=2{ % )(Su|1+5uzz+333n—I)+Sun+smz } (19)

2
Hiy==2 (28113 + Shss — 1) + 28},

(1-2w)
* 4y,
Hy = =2 )(Snu“'suzz"‘ Shu—1)+4Shy
Hy =228+ Sy — 1) + 2Shs— 1)

(12)

and S}y is the Eshelby’s tensor for fiber-1 and is given in Appendix B.

Next we solve for e}* and e$¥ in eqns (6) and (8), and for o}, and o% in eqn (7). The
solution procedure is the same as in the foregoing steps except for eqns (13} and (19), which will
be obtained below, depending on the type of inhomogeneity {,.

(a) ), denotes fiber phase. The solutions corresponding to eqns (14) and (15) are

w_Bi*. B, o (B3 - Bt 20)

€n = A**=II+A**¢33+E0 A

B** B:*- O(BA "VoBa )

5?3* A**‘ll +A**=33+E A** (21)

where the superscript ** denotes the inhomogeneity (),. In the above equations A**, BT, B3Y,
B#$* and B}* are given by eqn (16) where C¥ and D} are replaced by C#* and D¥* respectively.

The coefficients C§* and D¥** are of the same forms as those given by eqn (17) except that
the superscript * and the subscript 1 are replaced by ** and 2, respectively.
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Likewise, the disturbed stress o is given by

gﬁ={ 2 (HW'BI"+H} B;"*)}E.
wo U1-2%) A "
+{ 2, +(HT.*B;‘*+HT2*B:**)}
(1-2w) A** €

9o[HI'(By" — wBl")  Hi7(BS” = v,BTY) 2
Eo AX¥ AX* ( )

+—

ok _ { 4v, +(H;*1*BT*+H;';*B;**}€
po (12 A¥* "

+{2(1 v) (H:.B;"*+th*B4*)}
( 2u0) A*

*%, k% *k ¥k pkk *%
+E0{H2| (334** veB; ) Hy (3144** voB3 )} (23)

where H}* is given by eqn (19) and S}, is replaced by S%, which is given in Appendix B.

(b) (), denotes partuculate phase. A particulate filler is assumed to be of spherical shape.
The expressions for e** and o}; are again given by eqns (20)~(23) except that the coefficients C**
and H%* are now given by

_ A1+ vy 4 (p- Aot po
== ST\ Ao>+2< —Ao)

wx_ (I+w) 2(0=5wp) { pa—po Ao
Cie =30y 150 vo)( AZ—A0)+ Ny
cr=cy 4

*%
Cll

(1+ ) 2(7'51’0)(#2‘#0 (Ao*‘zﬂo
* —
O =30 vy T TSA= o)\ Ay = )+ —/\o)
**__2(9+5V0)
Hi =-150=5
21 +52,)
¥k —
HE = =150=0,) 25)
H;1*=2H72*
s _ 16
Hy = 15(1 - )
From eqn (1), we have
(om _ 2 2y .
w (-2 T E— 2™ (26)
(oadm_  4n . 2l—w).
o A=) T U=20 @

After having expressed (o;)y, (o)) and (o}) in terms of €; we substitute them into eqn (9) to

solve for &, and é&;:
0

€= %(%-:) (29)
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where S, S, and S; are given in Appendix C. With eqns (28) and (29), we can obtain eigenstrains
* 4
€;and €; as

{(BI*SA ':gz*sz) (B* ;:031*)}(&}) (30
{(Bs*SX; ;m*sz) (B - :oBs*)}(Eo) 3D
{ *SA:*? S) (Bé"*A:fBT*)}(.E.;) 62)
AT )

2.2 Computation of longitudinal Young's modulus E, of a hybrid composite )
When all fibers are aligned in the uniaxial loading direction, the equation of the equivalence
of strain energy (eqn (10)) is reduced to

02 02 0% 0_¥%
g _ o oglenf;  o€x f2 34
3E, 2B, 2 | 2 - G4

With eqns (31) and (33), eqn (34) provides us with the longitudinal Young’s modulus E; of the
hybrid composite:

o

E_
—ELO—— i+ 35)
where
f{(BfSH'Bsz) (BiI VoB*)}
A*S
B3*S,+B:'Sy) | (BY - y,B*
+fz{( 3 ,;**84 2) ( A*l:) 3 )} (36)

1t should be noted that S, S; and S, are also functions of f, and f, (see Appendix C). When the
two kinds of fillers are identical, i.e. ), = (), and the volume fraction of the filler is small, one
can easily obtain the results based on Eshelby’s equivalent inclusion method (without back
stress analysis).

3. RESULTS AND DISCUSSION

Since a hybrid composite consists of three phases, a number of parameters characteristic of
the three phases must be specified in order to compute E;. Here we set Poisson’s ratio of the
matrix as 0.35 and those of two kinds of fillers as 0.3 throughout our computation. As a
demonstration of our results, the following cases are computed:

(i) Case-1: Compute E;/E, for given stiffnesses of the fillers, (E/Ey), = 50 and (E/ Ey), = 100,
and given ratio of the volume fraction of the fillers, f,/f; =3 for various aspect ratios of the
fibers.

(ii) Case-2: Compute E;/E, of a fiber-particulate composite for (E/Eg); =50, (F/Ey), =50
and f;=f,.

The results of Case-1 are shown as solid curves in Fig. 2 where E;/E, computed by a “rule
of mixtures” which can be obtained asymptotically by increasing the aspect ratios of fibers, is
shown as a dotted line. It is noted in Fig. 2 that the aspect ratio //d being 1 corresponds to the
case of a particulate filler.

The results of Case-2 are shown in Fig. 3 where two extreme cases are also investigated,
i.e. two kinds of fillers are identical and they are either of the fiber type or of the particulate
type. It is concluded from Fig. 3 that “a volume average approach” to combine the results of

S8 Vol. 17, No, 6—B
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Fig. 2. Longitudinal Young's modulus of a hybrid composite vs. volume fraction of fillers with f, = 3f,.
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fiber only and particulate only does not provide the results of fiber-particulate system. In other
words, if it does, then the curve of fiber-particulate system would have been located exactly in
the middle between those cases of fiber only and particulate only since f; = f,. Also the results
based on a “rule of mixtures” are plotted as a dotted line in Fig. 3.

Finally it should be noted that the present formulation can be easily extended to the case of
more than three-phase materials since all the interactions among various Kinds of inhomogeneity
are carried by €; (see eqns (2) and (6)). Hence in the equation of the equivalence of the strain
energies (eqn (10)), an addition of another kind of inhomogeneity simply leads to that of another
term carrying the corresponding eigenstrain to the r.h.s. of eqn (10).
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APPENDIX A
A strain energy W of a hybrid composite containing two kinds of inhomogeneities (£}, and £,) is given by

w=; [ (o4 + ol + i+ u) 4V (AD

where the domain of integration is D (entire body) including the matrix, {}; and {},, o;; and u;; are the disturbances of the
stress and strain (displacement gradient) due to inhomogeneities and 4 is the average displacement in the matrix and the
symmetric component of its gradient is é; (see eqn (1)). We expand the integrand in eqn (A1) as

(0’?1 + 03)(“25 + éu + u;_,) = U%R?J + 0’?](“’;‘5 + Ilu)+ 0’0(“2}4’ iu + Ru) (Az)

Note that

ID Uy(ll?_,"" Izu + M“) dv= "L 0'y;(ll;°+ li‘ + M;) dv+ fIDI 0'[]"[(“10+ ﬂi + u,) ds = 0, (A3)

since oy;; =0 in D and ayn; =0 on |D|, where |D) is the boundary of D, I ivati -
has been used, Ll | ot undary of D. In the derivation of (A3) Gauss' divergence theorem

Next consider the second term on the right hand side of eqn (A2). This ¢ i i i i
e!, o consi qn (A2). This term can be rewritten as in terms of eigenstrain

0'?}('1“1 + u;_,) = U?[{(ﬁu + Ui — e;]) + l;]} = 0',,“?‘1 + Goata- (A4)
where the Eshelby’s equivalent inclusion method is applied;
oy = Cew(i” + g~ Cs) inD. (A%)

The first term on the right hand side of eqn (A4) vanishes upon integration over D by the same token leading to eqn (A3).
Thus, a strain energy W (eqn (A1) is simplified as

1 1
w=1 La?,ng,,dwi L olegdv (A6)
. . . . % kK, .
Since we have two kinds of eigenstrains ¢; and €; , ey is given by

€ ﬁ in
= ¢ infy
0 in D00, A7

With eqn (A7), eqn (A6) is further reduced to

1 1 1
w=3 fn oful, DV +3 jm age;awifmagewu (AB)
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A strain energy W can be interpreted as per a unit volume. Then, we obtain from (A8)

W= %a?}u?,, + %flcr?,eﬁ +%ha'?,e§‘. (A9)

Under the applied stress o, a composite has a strain energy 1/2C5ojol, where C§y,™' is the compliance of the
composite. Thus we can obtain the equation of the equivalence of strain energy (eqn (10)).

APPENDIX B SHELBY'S TENSORS
For a fiber-like inclusion, S}y are given by

el 3 a? 1 f -9
Shu=Sn=gr 5 AT~ 2 K=

U [ G~ f . 3a?
S;JJJ"z(I_Vo)[l 2Vo+ (az—l) {l 2"0"'(“2_‘)}8]

Sha= St =g [y~ (= 20~ i
2= 22!1-4(]_1’0) 2((! —l) Vo, 4((! _l)g} (Bl)

1 2 1 3a?
Sl =Shy = "2(1 —_— (a‘f_ 1)+4(1 _ VO){(aza_ ])-(l "2"0)}3

RS B 1 LU PP R
Shi =Sk =750l 1= Dot Grop et L 2 g

where », is Poisson’s ratio of a matrix, « is aspect ratio of a fiber (= //d), and g is given by

g= G,;L”m{a(ah 12~ cosh™a}. (82

For spherical inclusion, non vanishing S} are

-5
Stin=Shn=Shn= %l——?:)

1-5
s?m =Sy = S§3" = ‘T(Tl_{% (B3)

4-5
5%212 =S%3=Shn= '1('5‘(—_%-

APPENDIX C
A substitution of (ay)u, (o)) and (o'}) into eqn (9) yields the value of S, S\ and S, defined in eqns (28) and (29) as

5=QuQn-QuQn
S1= QR - QR ((83))
8= QuR - QuR;

where

= H*B*+HE B> 2 H** p** . gt gt
Q“_—.%_;.)@+fl{(l_22%)+(_u31 . 12 3)} +f2{(l—2vo)+( 1 IAt‘ 12 By )}

B fisf) g Do GBS HNBON +(H:*Bt*+uf;*82'*)}

Q=122 -2 =2 y
_bnl=fimf), o[ 4w (HAB*+HRBY) an_ (HEBY*+HE BT
G =" =0 il }*f’{(l—z"m,f s ] @
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Ul =wdl—fi=f) , , [A1=w)  (H3B* +HEBY
Qu= MR Lol (B0 BB HaB) o ,

{2(1- w, (Hi By +Hy BYY
=2 " AW }

*
Ri= LB - vBt)+ HYBS - Byt +-SH AN B - B!+ HENBY* - B %)

Ry=JLH 3B, - voB )+ HEBS - B +-L{HAN B - BT+ B BY* - B,



